جريدة الدستور

Revision

And

Rules

Second secondary

Mathematics

Prepare by

Mr / Mortagy

The general term (nth term) of the arithmetic sequence

is $T_n = a + (n-1) d$ where n is the order of the term.

Rules

The function V (h) is called the variation function of f at $X = X_1$

$$V(h) = f(X_1 + h) - f(X_1)$$

If (T_n) is an arithmetic sequence whose first term is (a) and the common difference is (d)

, then the general form of the arithmetic sequence is (a, a+d, a+2d, a+3d, ...)

To find the order of the term whose value is X, we put $T_n = X$

To find the order of the first term whose value is less than a given value x, we put $T_n < x$

To find the order of the first term whose value is greater than a given value X, we put $T_n > X$

To find the order of the first positive term in an arithmetic sequence, we put $T_n > 0$

To find the order of the first negative term in an arithmetic sequence, we put $T_n < 0$

If the sum of three numbers in an arithmetic sequence is given, it is better to put them in the form (a - d, a, a + d)

If the sum of four numbers in an arithmetic sequence is given, it is better to put them in the form (a-3d,a-d,a+d,a+3d)

If a , b and c are three consecutive terms of an arithmetic sequence , then the middle term b equals the arithmetic mean of the two other terms a and c i.e. $b = \frac{a+c}{2}$ or 2b = a+c

If T_{χ} , T_{ν} are two terms of d (the common difference of an arithmetic sequence where $X \neq y$ the sequence $= \frac{T_y - T_X}{y - X}$

The sum of (n) terms of an arithmetic sequence is $S_n = \frac{n}{2} [a + \ell]$

The sum of (n) terms of an arithmetic sequence in terms

of its first term (a) and its common difference (d)

is: $S_n = \frac{n}{2} [2 a + (n-1) d]$

$$S_n - S_{n-1} = T_n$$
 $S_{10} - S_9 = T_{10}$

$$S_{10} - S_0 = T_{10}$$

The general term (nth term) of the geometric sequence

If (T_n) is a geometric sequence whose first term is (a) and its common ratio is (r), then its general term is in the form $T_n = a r^{n-1}$ where n is the order of the term.

 $r \text{ (the common ratio of the geometric sequence)} = \frac{\text{the value of any term in it}}{\text{the value of the preceding term directly}}$

The general form of the geometric sequence

Putting n=1, 2, 3, in the previous general term we get the general form of the geometric sequence, that is: $(a, ar, ar^2, ar^3, ...)$

If T_v , T_v are two terms of a geometric sequence, then $r^{x-y} = \frac{T_x}{T_y}$

The difference between two squares : $1 - r^2 = (1 - r)(1 + r)$

The difference between two cubes : $1 - r^3 = (1 - r) (1 + r + r^2)$

The sum of two cubes : $1 + r^3 = (1 + r) (1 - r + r^2)$

 $1 + r^2 + r^4 = (1 - r + r^2)(1 + r + r^2)$

If a , b and c are three successive terms of a geometric sequence , then b is known as the geometric mean between the two numbers a and c where : -

i.e. $b^2 = a c$, then $b = \pm \sqrt{a c} M / Mostagy$

The arithmetic mean between two different positive real numbers is greater than their

Finding the sum of n terms of a geometric series in terms of its first term (a) and common ratio (r):

$$S_n = \frac{a(1-r^n)}{1-r}, r \neq 1$$

Finding the sum of n terms of a geometric series in terms of its first term (a) and last term (l)

$$\therefore S_n = \frac{a - \ell r}{1 - r}, r \neq 1$$

$$T_n = S_n - S_{n-1}$$
 $T_3 = S_3 - S_2$

$$T_3 = S_3 - S_2$$

The average rate of change function

$$A \text{ (h)} = \frac{V \text{ (h)}}{h} = \frac{f (X_1 + h) - f (X_1)}{h}$$
 the average rate of change =
$$\frac{\Delta y}{\Delta X} = \frac{f (X_2) - f (X_1)}{X_2 - X_1}$$

The rate of change of the function f at $x_1 = \lim_{h \to 0} A(h) = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}$

Rules of differentiation

If f(X) = a where a is a real number, then $\hat{f}(X) = 0$

If
$$f(X) = X^n$$
 where $n \in \mathbb{R}$, then $\hat{f}(X) = n X^{n-1}$

If f and g are two differentiable functions with respect to X and $y = f(X) \times g(X)$ • then $\frac{dy}{dx} = f(x) \times \hat{g}(x) + g(x) \times \hat{f}(x)$

i.e. $\frac{dy}{dx}$ = The first × derivative of the second + the second × derivative of the first

If f and g are two differentiable functions with respect to

X and $y = \frac{f(X)}{g(X)}$ where $g(X) \neq 0$, then:

$$\frac{dy}{dx} = \frac{g(x) \times \hat{f}(x) - f(x) \times \hat{g}(x)}{(g(x))^2}$$

i.e. $\frac{dy}{dx} = \frac{\text{(denominator} \times \text{derivative of numerator)} - \text{(numerator} \times \text{derivative of denominator)}}{\text{(denominator)}}$

Chain rule
$$\frac{d y}{d x} = \frac{d y}{d z} \times \frac{d z}{d x}$$

If $y = [f(x)]^n$ where f is differentiable function with respect to x

, $n \in \mathbb{R}$, then $\frac{dy}{dX} = n \left[f(X) \right]^{n-1} \times f(X)$

i.e. Derivative of : $(bracket)^n = n (bracket)^{n-1} \times derivative of what inside the bracket$

If
$$y = \sqrt{f(x)}$$
, then $\frac{dy}{dx} = \frac{1}{2\sqrt{f(x)}} \times f(x) = \frac{\hat{f}(x)}{2\sqrt{f(x)}}$

The slope of the straight line whose equation: a X + by + c = 0

is $\frac{-\text{ coefficient of } X}{\text{ coefficient of y}} = \frac{-a}{b}$

The slope of the straight line passing through the two points $(X_1, y_1), (X_2, y_2)$

The slope of the straight line = $\tan \theta$

where (0) is the measure of the positive angle which the straight line makes with the positive direction of the X-axis

The slope of the X-axis = the slope of any horizontal straight line (parallel to X-axis) = zero The slope of the y-axis = the slope of any vertical straight line (parallel to y-axis) = $\frac{1}{z_{ero}}$

If L_1 and L_2 are two straight lines of slopes m_1 and m_2 respectively , then

 $(1)L_1 // L_2 \Leftrightarrow m_1 = m_2$

 $(2)L_1 \perp L_2 \Leftrightarrow m_1 \times m_2 = -1$

Given a point on it (X_1, y_1) and the slope (m) is $[y - y_1 = m(X - X_1)]$

 $\sin (A + B) = \sin A \cos B + \cos A \sin B$ $\sin (A - B) = \sin A \cos B - \cos A \sin B$

 $\cos (A + B) = \cos A \cos B - \sin A \sin B$

 $\cos (A - B) = \cos A \cos B + \sin A \sin B$

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}, \tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Prepared by Mr. Mortagy

The factorial of a positive integer n is written as $\lfloor n \rfloor$ and equals the product of all the positive integers which are less than or equal to n

i.e.
$$n = n (n-1) (n-2) \cdots \times 3 \times 2 \times 1$$

and the number of factors of the factorial = n factors

$$0 = 1 = 1$$
 So, if $n = 1$, then $n = 0$ or $n = 1$

The factorial of a number can be written in terms of another number less than the original one i.e. $\lfloor \underline{n} \rfloor = n \mid n-1 = n \mid (n-1) \mid n-2 = \cdots$ where $n \in \mathbb{Z}^+$

The number of permutations of n different objects taking r at a time is denoted by the symbol ⁿP_r where:

(1)
$${}^{n}P_{r} = n (n-1) (n-2) ... (n-r+1)$$
 where $1 \le r \le n \cdot n \cdot {}^{n}P_{r} \in \mathbb{Z}^{+}$

$$^{n}P_{r} = \frac{\lfloor n \rfloor}{\lfloor n-r \rfloor}$$

$$^{n}P_{0} = 1$$

$$\begin{bmatrix}
{}^{n}P_{0} = 1
\end{bmatrix}$$

$$\begin{bmatrix}
{}^{n}P_{n} = \underline{n}$$

Arrangement of n objects in one row

The number of ways to arrange n objects in one row = | n |

Arrangement of n objects on a circle

The number of ways to arrange n objects on a circle = |n-1|

• If $n, r \in \mathbb{N}, r \le n$, then

(1)
$${}^{n}C_{r} = \frac{{}^{n}P_{r}}{|r|} = \frac{|\underline{n}|}{|r||n-r|}$$

(3)
$${}^{n}C_{n} = {}^{n}C_{0} = 1$$
, ${}^{n}C_{1} = n$

(2)
$${}^{n}C_{r} = {}^{n}C_{n-r}$$
 "reducing law"

(4) If
$${}^{n}C_{\mathcal{X}} = {}^{n}C_{y}$$
 , then : $\mathcal{X} = y$ or $\mathcal{X} + y = n$

If the number of sides of a geometrical figure = n sides

- , then the number of all line segments that represented in the figure = ${}^{n}C_{2}$
- , \because the diagonal of the geometrical figure is the line segment joining between 2 non-consecutive vertices Mr / Mortagy
- :. The number of the diagonals of the geometrical figure
 - = the number of all line segments the number of sides in the figure = ${}^{n}C_{2}$ n

The number of diagonals of the triangle = ${}^{3}C_{2} - 3 = 0$

- , the number of diagonals of the quadrilateral = ${}^{4}C_{2} 4 = 2$
- , the number of diagonals of the pentagon = ${}^{5}C_{2} 5 = 5$
- , the number of diagonals of the hexagon = ${}^{6}C_{2} 6 = 9$

$\sin 2 A = 2 \sin A \cos A$

$$\cos 2 A = \cos^2 A - \sin^2 A$$
$$= 2 \cos^2 A - 1$$
$$= 1 - 2 \sin^2 A$$

$$\tan 2 A = \frac{2 \tan A}{1 - \tan^2 A}$$
, where $\tan A$ is defined, $\tan^2 A \neq 1$

- The area of the triangle = $\frac{1}{2}$ its base length × the corresponding height
- The area of the triangle = $\frac{1}{2}$ the product of two side lengths × sine of the included angle

Heron's formula to find area of a triangle

Let a, b and c be the side lengths of the triangle ABC, and 2 P be the perimeter of the triangle

i.e.
$$2P = a + b + c$$
, then The area of the triagnle ABC = $\sqrt{P(P-a)(P-b)(P-c)}$

If the radius length of the inscribed circle of a triangle = r,

the area of the triangle = Δ and the perimeter of the triangle = 2 P, then $r = \frac{\Delta}{R}$

If
$$y = \cos x$$
, then $\frac{dy}{dx} = -\sin x$

If
$$y = \sin x$$
, then $\frac{dy}{dx} = \cos x$

If
$$y = \tan x$$
, then $\frac{dy}{dx} = \sec^2 x$

$$(1) \int \sin x \, \mathrm{d}x = -\cos x + C$$

$$(2) \int \cos x \, dx = \sin x + C$$

where C is an arbitrary constant.

$$(3) \int \sec^2 x \, \mathrm{d}x = \tan x + C$$

(1)
$$\int \sin (a X + b) dX = -\frac{1}{a} \cos (a X + b) + C$$

(2)
$$\int \cos (a X + b) dX = \frac{1}{a} \sin (a X + b) + C$$

where C is an arbitrary constant.

(3)
$$\int \sec^2 (a X + b) dX = \frac{1}{a} \tan (a X + b) + C$$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

The sine rule

In any
$$\triangle$$
 ABC: $\left(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2 r\right)$

The cosine rule

any triangle ABC:

$$a^2 = b^2 + c^2 - 2 bc \cos A$$

 $b^2 = c^2 + a^2 - 2 ca \cos B$
 $c^2 = a^2 + b^2 - 2 ab \cos C$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2 bc}$$

$$\cos B = \frac{c^{2} + a^{2} - b^{2}}{2 ca}$$

$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2 ab}$$

Prepared by Mr. Mortagy

Answer the following:

,

(a) $\chi + 3$

(b) $\frac{1}{2} x^2 + 3x + c$ (c) $x^2 + 3x + c$ (d) $\frac{x^3 + 3x^2}{x^2}$

The solution set of the equation ${}^{11}C_r = {}^{11}C_{2r+2}$ is

(a) 3

(d) 6

The sum of the first term and fourth term in a decreasing geometric sequence = 70The sum of the second and third terms = 60, find the sum of infinite terms starting from its first term.

If a , b , c , d , e are positive numbers forming a geometric sequence , then the geometric mean of these terms is

(a) c

(b)√abcde

(c)-c

 $(d) - \sqrt{a b c d e}$

The area of the triangle whose side lengths are 5, 6, 7 cm. equalscm².

(a) 3√6

(b) 6 \(\) 6

(c) 15

(d) 105

If (x, 7, y) form an arithmetic sequence and (x + 2, 5, y - 6) form a geometric sequence, then $y - x = \dots$

(a) 3

(c) 11

(d) 14

 $\sin 75^{\circ} \sin 75^{\circ} - \cos 75^{\circ} \cos 75^{\circ} = \dots$

(a) $\frac{1}{2}$

(b) $\frac{\sqrt{3}}{2}$

(c) I

(d) zero

If A and B are two acute angles and $\tan A = \frac{5}{6}$, $\tan B = \frac{1}{11}$, then A + B =

(a) 30°

(b) 60°

(c) 45°

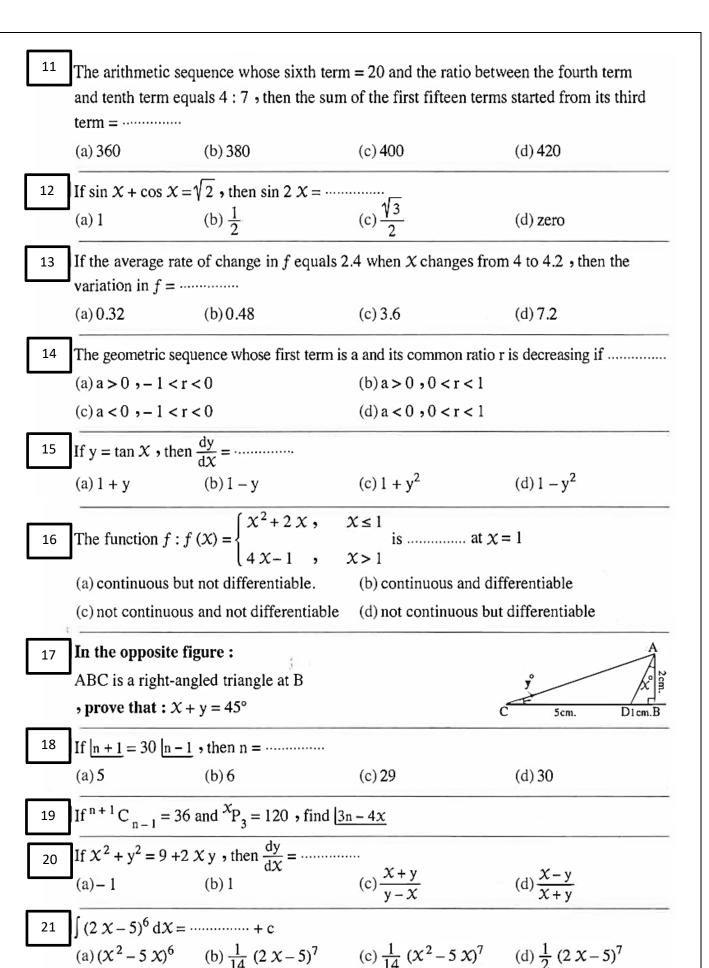
(d) 75°

If S_n is the sum of the first n terms from an arithmetic sequence and $S_{2n} = 3 S_n$, then S_{3n} : $S_n = \cdots$

(a) 4

(c) 8

(d) 10


10 The number of ways that 5 students can sit on 7 seats in one row equals

(a) 7

(b) 5

 $(c)^7 P_5$

 $(d)^7 C_s$

(a) 5	(b) 8	(c) 14	(d) 17
If $f(3-2x)$	= 3 $x^2 + 1$, then \hat{f} (7) =	
(a) - 12	(b) - 2	(c) 6	(d) 42
If sin (A + B)	$=\frac{56}{65}$, $\sin(A-B)=$	$\frac{-16}{65}$, then $\sin A \cos B$ (c) $\frac{7}{13}$	=
(a) $\frac{5}{13}$	(b) $\frac{4}{13}$	(c) $\frac{7}{13}$	(d) $\frac{-5}{13}$
If 5 geometric	means are inserted be	tween a and b, then th	e third mean is
(a) $a^{\frac{1}{5}} b^{\frac{4}{5}}$	(b) $\frac{ab}{2}$	(c) $\sqrt{a \ b}$	(d) $a^{\frac{4}{5}} b^{\frac{1}{5}}$
difference of	the sequence d = ·······		orm = n^2 , then the common the common than
difference of the number of	the sequence d = ·······		
The number of terms.	the sequence d = of terms of the geomet (b) 7	ric sequence (5, 10, 2) , , 1280) equals
difference of the number of terms. (a) 8 If $ \underline{\mathbf{n}} = \mathbf{a} $, the	the sequence d = of terms of the geomet	ric sequence (5, 10, 2) , , 1280) equals
difference of the number of terms. (a) 8 If $ \underline{n} = a$, the (a) $a - 1$	the sequence $d = \cdots$ of terms of the geomet (b) 7 $n = 1 = \cdots$ (b) $n = 1 = \cdots$	ric sequence (5, 10, 2) (c) 10	(d) 9 $(d) \frac{a}{n}$
difference of the number of terms. (a) 8 If $ \underline{n} = a$, the (a) $a - 1$	the sequence $d = \cdots$ of terms of the geomet (b) 7 $n = 1 = \cdots$ (b) $n = 1 = \cdots$	(c) 10 (c) n + a	(d) $\frac{a}{n}$
difference of the number of terms. (a) 8 If $ \underline{n} = a$, the (a) $a - 1$ $\int \cos(3x + 1) \cos(3x + 1)$ (a) 3	the sequence $d = \cdots$ of terms of the geometric sequence $d = \cdots$ (b) 7 $m = \frac{n-1}{2} = \cdots$ (b) $n = 1$ (c) $\frac{1}{3}$ of a geometric sequence $d = \cdots$	(c) 10 (c) n + a + c , then a =	(d) $\frac{a}{n}$
The number of terms. (a) 8 If $ \mathbf{n} = \mathbf{a}$, the (a) $\mathbf{a} - 1$ $ \mathbf{n} = \mathbf{a}$, the first term of terms.	the sequence $d = \cdots$ of terms of the geometric (b) 7 In $[n-1] = \cdots$ (b) n a If $dx = a \sin(3x + 1)$ (b) $\frac{1}{3}$	(c) 10 (c) n + a + c , then a =	(d) 9 (d) $\frac{a}{n}$ (d) $\frac{1}{9}$

(c) 17

(a) 12

(b) 20

(d) 19

Answer

(b)

$$T_1 + T_4 = 70$$

$$\therefore$$
 a + ar³ = 70

$$\therefore a(1+r^3) = 70$$
 (1)

$$T_2 + T_3 = 60$$

$$\therefore ar + ar^2 = 60$$

$$\therefore$$
 ar $(1 + r) = 60$ (2)

From (1) (2):

$$\therefore \frac{a(1+r^3)}{ar(1+r)} = \frac{70}{60}$$

$$\frac{a(1+r)(1-r+r^2)}{ar(1+r)} = \frac{7}{6}$$

$$\therefore 6(1-r+r^2)=7r$$

$$\therefore 6r^2 - 13r + 6 = 0$$

$$(2 r-3)(3 r-2)=0$$

 $r = \frac{3}{2}$ (refused because the sequence is decreasing)

or
$$r = \frac{2}{3}$$

From (1):
$$\therefore a = \frac{70}{1 + (\frac{2}{3})^3} = 54$$

$$\therefore s_{\infty} = \frac{a}{1-r} = \frac{54}{1-\frac{2}{3}} = 162$$

- (a)
- (b)
- (b) (c)
- 11

(b)

(a) 12

8

- (b) 13
- 14 (b)
- (c) 15

(b) 16

17

$$\therefore \tan x = \frac{1}{2}$$
, $\tan y = \frac{2}{6} = \frac{1}{3}$

$$\therefore X + y = 45^{\circ}$$

18

19

$$rac{n+1}{C_{n-1}} = {n+1}{C_2} = 36$$

$$\therefore \frac{n+1}{12} = 3$$

$$\therefore \frac{{}^{n+1}P_2}{2} = 36 \qquad \qquad \therefore {}^{n+1}P_2 = 72 = 9 \times 8 = {}^{9}P_2$$

∴ n + 1 = 9 ∴ n = 8

$$\cdot : {}^{x}P_{3} = 120 = 6 \times 5 \times 4 = {}^{6}P_{3}$$

$$\therefore x = 6$$

$$\therefore [3 \text{ n} - 4 \text{ x}] = [24 - 24] = [0] = 1$$

(b) 20

- (b) 21
- 22
- (c)

(b) 24

- (c) 25
- 26 (c)
- (d)

(d) 28

- 29 (b)
- 30 (a)

31

$$f(x) = \frac{1}{x+1} \quad , \quad \therefore \hat{f}(x) = \frac{-1}{(x+1)^2}$$

- .. The slope of tangent at the point (0 , 1) equals 1
- .. The equation of tangent at the point (0 , 1) is: $\frac{y-1}{x-0} = -1$

$$i.e. X + y = 1$$

32 (c)